## FloSeq

Le Moulon
GÉNÉtioue oumntitative ET ÉVOLUTION

UMR GQE - Le Moulon Ferme du Moulon 91190 Gif sur Yvette www.moulon. inra.fr

## Genotype-Phenotype map and the determinants of Maize floral transition

Fabien Chardon (INRA), Christine Dillmann (Univ Paris-Sud), Marie-Laure Martin-Magniette (AgroParisTech), Adrienne Ressayre (INRA), Maud Tenaillon (CNRS)
UNIVERSIT
SU


AgroParisTech

Flowering time is one of the most studied trait in crops because it conditions the fulfillment of the cycle from germination to seed production during the favorable growing season. Our project aims at better understanding the determinants of floral transition in maize, in relationship with earliness and climate adaptation. Our plant material is issued from two long-term divergent selection experiments for flowering time, that started from two inbred lines, F252 and MBS. Each DSE resulted in Late and Early genotypes within a homogeneous genetic background. Our objectives are (i) to produce and analyze RNA-Seq data obtained from samples of Shoot Apical Meristem during floral transition; (ii) to develop statistical methods to find genes differentially expressed between Late and Early genotypes; (iii) to compare results obtained from the two genetic backgrounds, F252 and MBS.

## State of the art: Selection for flowering time resulted in changes in the developmental sequence

## Low effective population size leads to fast coalescence

Keeping track of the pedigrees: 2 genetic backgrounds, 4 populations, 2 independent families per population.


Each DSE (F252 and MBS) was initiated from a single seed lot of a commercial maize inbred. One representative from each family at generation G13 was chosen to fine-study the determinants of the response to selection

Sustained response to selection indicates genetic changes for the determinants of flowering time

18 generations of Divergent Selection Experiments for flowering time


Standardized response is expressed in units of residual deviation for flowering time in the control. Flowering times (expressed in thermal time) were recorded ea
year on 12 plants per DSE progenitor, and corrected for vear and block effects.

Within each Early family, the response to selection is linear. In the Lates families, patterns of response differ between families. Most Late families seem to reach a physiological limit
$\Rightarrow$ Seeking for genetic changes

Late and Early genotypes differ for both timing and developmental stages for floral transition

Fine analysis of nine representative genotypes


Within each genetic background (F252 or MBS), Late and Early genotypes differ for the leave developmental stage at which flowering time occurs.


SAM morphological state of SAM pools as a function of leave developmental stage in the 2012 (left) and 2013 (right) samples.

RNA were extracted from each sample and conserved for RNASeq

* Preliminary results: 2012 samples from FE36 and $F L 317$. Samples at the same SAM state were considered as replicates
* FloSeq project: RNASeq for the full data set. Including 2 genetic backgrounds (F252 and MBS) and biological replicates.


## Data treatment

RNASeq

| Imagif |
| :---: |
| RNA extracts |
|  |
| mRNA |
| $\downarrow$ evesse trat |
| CDNA Ilibray |
| $\checkmark$ grathy pooor |
| Ilumina Hiseq |
| $\downarrow^{\text {sluareses }}$ |
| 100bp single reads |

Repeatability across year
experimentation?

Bioinformatics


## Preliminary results

Genes involved in organ identity


Genes involved in flowering transition


Genes involved in Ealy / Late differences


