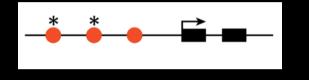
Using gene expression level as complex traits: *cis*- and *trans*regulatory effects

A Genissel, INRA, umr1290 Univ Paris-Saclay

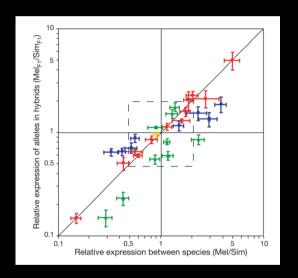
What is the role of non coding DNA?


Jacob and Monod (1961): "the proper function of every gene depends on 2 distinct components: what is produced and the circumstances under which it is produced"

Britten and Davidson (1971): repetitive sequences regulate transcription and play a crucial role in evolution.

King and Wilson (1975) Human and Chimps diverge only by 1.6% in DNA, but don't look or act alike.

Contribution of *cis*- and *trans*- effects in phenotypic evolution



2 scales of studies : within and between species

• eQTL mapping and genetical genomics

The relative contribution of effects

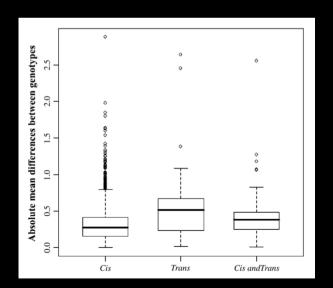
 cis regulatory changes contribute to interspecific expression differences (<u>Wittkopp, 2004</u> & 2007)

• *trans* regulatory changes in yeast (Brem and Kruglyak, 2002)

Two models were tested in Drosophila melanogaster (Genissel et al 2008)

Is transcriptional variation highly polygenic and epistatic?

- Infinitesimal model among offspring
 - cis effect is the allele at the gene
 - trans effect is 'Ore fraction' in the background

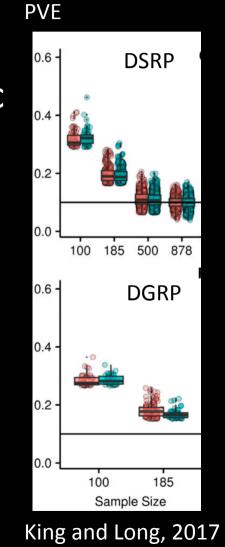

Does transcriptional variation depend on a few regulatory effects of large magnitude?

 Contrast models compare transcriptional variation among offspring and between offspring and parents.

Cis effects are major contributors

Comparison among Genotypes ^a					
oOre versus o2b	pOre versus oOre	p2b versus o2b	- Regulatory Effects	Simple Model ^b	Nested Model ^b
NS	NS	NS	Unknown	3,087(2,701)2,340(2,055)
***	NS	NS	Cis	571(545)	, , , ,
NS	***	NS	Trans	1	25
NS	NS	***		11	16
NS	***	***		0	0
***	***	NS	Cis and trans	0	55(53)
***	NS	***		14	23
***	***	***		1	1

10% of differentialexpression90% of *cis*-effects



Larger phenotypic effect in *trans*?

Not so easy to detect the effects

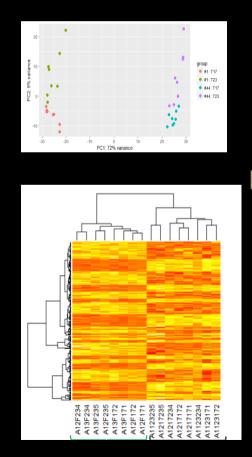
 More eQTL near genes because it is easier to detect? if larger phenotypic effects, if *trans* depends on several interactions and more mutations

 Beavis effect in eQTL mapping (Xu, 2003): overestimation of effects (100, 500, 1000 progenies)

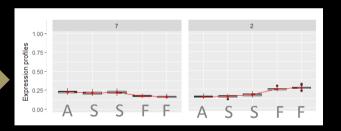
Reconcile with DRGP eQTL? (Huang et al 2015)

 Introduce variance eQTL: 'veQTL' involved in epistatic interactions with *cis* variants

- 304) 1,02	0.10 71 (287 + 384) 29 (568 + 461) L (within 1 kb of	1,189 (59	7 + 510)	0.20 941 (308 + 633) 1,339 (608 + 731)			
- 304) 1,02	29 (568 + 461)	1,189 (59		. ,			
	,	, ,	4 + 595)	1,339 (608 + 731)			
least one cis-eQT	(within 1 kb of	(denes) and num					
	-	genes) and num	ber of genes	with only trans-eQTLs.			
FDR threshold (cis + trans)*							
0.10	0.15	0.20					
544 (8 + 536)	743 (9 + 734)	925 (9 + 916)					
247 (6 + 241)	353 (7 + 436)	412 (7 + 405)					
t	0.10 544 (8 + 536) 247 (6 + 241)	0.10 0.15 544 (8 + 536) 743 (9 + 734) 247 (6 + 241) 353 (7 + 436) t least one <i>cis</i> -veQTL (within 1 kl	0.10 0.15 0.20 544 (8 + 536) 743 (9 + 734) 925 (9 + 916) 247 (6 + 241) 353 (7 + 436) 412 (7 + 405) t least one <i>cis</i> -veQTL (within 1 kb of genes) and	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			


Conclusion on Allele Specific Expression (ASE)

- Need for large scale studies : genome-wide expression profile and known genetic variation
- Mode and tempo of regulatory variation


Evolution of transcriptome after fluctuating temperature (PhD Arthur Jallet)

Fungi (clones)

Stable or Fluctuating temperature

 Transcriptome rewiring associated with fluctuations

- Fluctuation favors loss of gene expression plasticity
- Next: *cis* regulatory variation