Modélisation grande échelle du fonctionnement des écosystèmes terrestres: *comment mieux rendre compte des pratiques agricoles ?*

B. Guenet / N. Vuichard

Plan

- Eléments de contexte
- Représentation du couvert
 - Horizontalement
 - Verticalement
- L'importance de l'azote
 - Végétation
 - Sol
- Phénomène d'érosion

Contexte

 Les modèles globaux de végétation (MGV) servent de composante 'surface continentale' à des modèles de Système Terre

- couvrir l'ensemble des biomes -> génériques
- simuler les interactions avec les climats passé, présent et futur -> basés sur des processus

 Les MGV sont utilisés pour des études visant à estimer la réponse de la végétation à des évolutions du climat, du [CO₂] ou de perturbations anthropiques

Anomalie de NPP pour l'année 2003

Ciais et al., 2005

- Considérer l'échelle spatiale ('macro') comme une contrainte
- et discuter de la pertinence/justesse des informations produites par nos modèles

Processus modélisés

Une mosaïque de végétation

Un travail sur la phénologie des cultures

Développement du modèle ORCHIDEE-STICS

WAGALAM – Journée du 13 juin 2014

Evaluation du LAI

Smith et al., 2010

Impact de la canicule de 2003

Comparaison avec approche ascendante

• Anomalie 2003 du flux de Carbone sur la période Mai-Octobre

Smith et al., 2010

Une mosaïque de végétation

Un bilan d'énergie mono-couche

From J. Ryder

LABORATOIRE DES SCIENCES D WAGALAM – Journée du 13 juin 201

*A*ENT

ORCHIDEE

LABORATOIRE DES SCIENCES D WAGALAM – Journée du 13 juin 201

Vers un bilan d'énergie multi-couche

Vers un bilan d'énergie multi-couche

- profile shown at different times of day
- transport closure model based on canopy structure

- implementation of further factor to account for near field canopy turbulence effects

8 – plot of the mean modelled temperature gradients within the canopy (expressed as a difference from the temperature at the canopy top) against the measured temperature gradients for the same period. Also shown are the equivalent measurement date for individual days, as dotted lines)

Limitation de la productivité par l'azote

 Puits de Carbone dans la biosphère terrestre (1860-2100) – Modèles CMIP5

WAGALAM – Journée du 13 juin 2014

Modèles de végétation couplant C et N

 Intercomparaison de 12 modèles couplant C et N sur deux sites FACE

 \bigcirc

Les cycles du C et de l'N dans ORCHIDEE

- Travail de Sönke Zaehle (2007-2010)
 - Basés sur une version nommée O-CN (Zaehle et al., 2010a,b)
 - Principal focus: Réponse des flux de C à l'état azoté
- Un travail de merge dans le trunk d'ORCHIDEE en cours •

Institut Pierre

Simon Laplace

- La disponibilité en azote contrôle la respiration hétérotrophe (Craine et al., 2007).
- Lorsque l'azote est limitant la decomposition des MOS est accélérée (Nmining)

• L'effet N-mining peut induire des bilans de C négatifs (Fontaine et al., 2004)

 Table 1
 Soil carbon balance

	Low nutrient	High nutrient
(a) ¹³ C added	495	495
(b) 13 C lost as CO ₂	-365 ± 21	-318 ± 3
(c) 13 C remaining in soil	110 ± 11	140 ± 4
(d) ${}^{12}C$ lost as CO_2 because of PE	-140 ± 3	-72 ± 15
Soil carbon balance $(c + d)$	-30 ± 11	$+68 \pm 19$

Data are for the two nutrient treatments at day 70. Mean \pm standard error are expressed in mg C kg⁻¹ soil. PE, priming effect.

- Important de représenter les interactions stoichiométriques qui contrôlent la décomposition.
- Décomposition préférentielle du carbone labile sauf en cas de limitation par l'azote. Investir dans des enzymes à cout énergétique fort mais qui rendent l'azote disponible.
- Ajustement du C:N de la communauté microbienne

• L'N est également minéralisé dans sols et peut être

source de GHG.

- Primordiale de mieux comprendre et de mieux représenter les processus de nitrification/denitrification
- Le puits de C induit par les entrées anthropiques d'azote (0.096 W m⁻²) est plus que compensé par les émissions de GHG azotés (0.125 W m⁻²).

 La complexité du phénomène rend les modèles largement perfectibles 8 **-Ç Prieur 2012, Thèse 0.24 n na 1.7 18 0.77 1278 EUNGIOLE. с њи O-CN moyenne 1990-1999 3.0EU 3 0.58 10^{-1} 661 i e.R 16 2.36257201 1212 212 12:54 1.14 LONOTHOD ENHALVES. IER 2000 EDGAR 2000

 Mais des données à grandes échelles manquent pour contraindre les modèles...

Prieur 2012, Thèse

COMMENT REPRESENTER L'EROSION

- Les flux latéraux sont largement ignorés dans les ESM
- L'érosion est une part importante des flux latéraux Present day

Laboratoire des sciences du climat & de l'environnement

Regnier et al. (2013)

COMMENT REPRESENTER L'EROSION

- L'érosion déplace entre 0.54 et 3.75 Tg de OC ans⁻¹
- Affecte plus d'1 milliard d'hectares dans le monde.
- Est une source ou un puits de C?

Laplace

COMMENT REPRESENTER L'EROSION

- Les modèles utilisent généralement l'équation de perte de sol universelle de Williams (1995) adpaté à leurs problématiques
- Le modèle SWAT propose une approche empirique applicable aux ESM pour l'érosion par la pluie.
- Erosion = f(indice d'érosion, pratique culturale, couvert végétal, topography, fraction de rock)

• Erosion par le vent: WEPS basé sur les mêmes principes.

Conclusion

Insertion de légumineuses dans des rotations

- Cycle N (émisions N2O)
- Interactions C/N (productivité)
- Phénologie (bilan C, énergie)

Inter-cropping

- Erosion
- Bilan (énergie/eau/C)

Agroforesterie

- Bilan d'énergie
- Bilan d'eau

